
On the Impact of Refactoring on the Relationship between

Quality Attributes and Design Metrics

Eman Abdullah AlOmar

Department of Software Engineering

Rochester Institute of Technology

Rochester, USA

eman.alomar@mail.rit.edu

Mohamed Wiem Mkaouer

Department of Software Engineering

Rochester Institute of Technology

Rochester, USA

mwmvse@rit.edu

Marouane Kessentini

Computer and Information Science

University of Michigan

Michigan, USA

marouane@umich.edu

Ali Ouni

Department of Software Engineering and IT

ETS Montreal, University of Quebec

Montreal, Canada

ali.ouni@etsmtl.ca

Abstract—Background: Refactoring is a critical task in soft-

ware maintenance and is generally performed to enforce the

best design and implementation practices or to cope with design
defects. Several studies attempted to detect refactoring activities

through mining software repositories allowing to collect, analyze

and get actionable data-driven insights about refactoring prac-
tices within software projects.

Aim: We aim at identifying, among the various quality models

presented in the literature, the ones that are more in-line with the
developer’s vision of quality optimization, when they explicitly

mention that they are refactoring to improve them.
Method: We extract a large corpus of design-related refactor-

ing activities that are applied and documented by developers

during their daily changes from 3,795 curated open source
Java projects. In particular, we extract a large-scale corpus of

structural metrics and anti-pattern enhancement changes, from

which we identify 1,245 quality improvement commits with their
corresponding refactoring operations, as perceived by software

engineers. Thereafter, we empirically analyze the impact of these

refactoring operations on a set of common state-of-the-art design
quality metrics.

Results: The statistical analysis of the obtained results shows

that (i) a few state-of-the-art metrics are more popular than
others; and (ii) some metrics are being more emphasized than

others.

Conclusions: We verify that there are a variety of structural
metrics that can represent the internal quality attributes with

different degrees of improvement and degradation of software

quality. Most of the metrics that are mapped to the main quality
attributes do capture developer intentions of quality improvement

reported in the commit messages, but for some quality attributes,

they don’t.
Index Terms—refactoring, software quality, empirical study

I. INTRODUCTION

Being the de facto practice of improving software design

without altering its external behavior, refactoring has been the

focus on several studies, which aim to support its application

978-1-7281-2968-6/19/$31.00 ©2019 IEEE

by identifying refactoring opportunities, in the source code,

through the optimization of structural metrics, and the removal

of code smells [9], [25], [26], [28], [39], [49], [51]. Therefore,

several studies have been analyzing the impact of refactoring

on existing literature quality attributes, structural metrics, and

code smells [3], [4], [6], [7], [17], [29], [38], [52]. The

spectrum of quality attributes, structural metrics and code

smells, represents the main driver for studies aiming to imitate

the human decision making, and automate the refactoring

process.

Despite the growing effort in recommending refactorings

through structural metrics optimization and code smells re-

moval, there is very little evidence on whether developers

follow that intention when refactoring their code. A recent

study by Pantiuchina et al. [35] has shown that there is a

misperception between the state-of-the-art structural metrics,

widely used as indicators for refactoring, and what developers

actually consider to be an improvement in their source code.

Thus, there is a need to distinguish, among all the structural

metrics, typically used in refactoring literature, the particular

ones that are of a better representation of the developers’

perception of software quality improvement.

This paper aims in identifying, among the various quality

models presented in the literature, the ones that are more in-

line with the developer’s vision of quality, when they explicitly

state that they are refactoring to improve it.

We start with reviewing literature studies, which propose

software quality attributes and their corresponding measure-

ment in the source code, in terms of metrics. Software quality

attributes are typically characterized by high-level definitions

whose interpretations allow the possibility for multiple ways

to calculate them in the source code. Thus, there is little

consensus on what would be the optimal match between

quality attributes, and code-level design metrics. For instance,

as shown later in Section II, the notion of complexity was

the subject of many studies that proposed several metrics to

mailto:eman.alomar@mail.rit.edu
mailto:eman.alomar@mail.rit.edu
mailto:mwmvse@rit.edu
mailto:marouane@umich.edu
mailto:marouane@umich.edu
mailto:ali.ouni@etsmtl.ca

calculate it. Therefore, we investigate which code-level metrics

are more representative to the high-level quality attributes,

when their optimization is explicitly stated by the developer,

when applying refactorings.

Practically, we have classified 1,245 commits, as quality

improvement commits, by manually analyzing their messages

and identifying an explicit statement of improving an internal

quality attribute, along with detecting their refactoring activ-

ities. We mined these commits from 3,795 well-engineered,

open-source projects. We identify their refactoring operations

by applying state-of-the-art refactoring mining tools [41], [50].

We refine our dataset by untangling each commit to select

only refactored code elements. Then, we cluster commits per

quality attribute (complexity, inheritance, etc.). Afterward, for

each quality attribute, we calculate the values of its corres-

ponding structural metrics, in the files, before and after their

refactorings. And finally, we empirically compare the variation

of these values, to distinguish the metrics that are significantly

impacted by the refactorings, and so they better reflect the

developer’s intention of enhancing its corresponding quality

attribute. To the best of our knowledge, no previous study

has investigated the relationship between quality attributes and

their corresponding structural metrics, from the developer’s

perception. Our key findings show that not all state of the art

structural metrics equally represent internal quality attributes;

some quality attributes are being more emphasized than others

by developers. This paper extends the existing knowledge of

empirically exploring the relationship between refactoring and

quality as follows:

1) We extensively review the literature of quality attributes,

used in the literature of software quality, and their cor-

responding possible measurements, in terms of metrics.

Then we mine a large scale dataset from GitHub that

consists of 1,245 commits from 3,795 software projects,

proven to contain refactoring operations, and illustrating

developers self-stated intentions to enhance our studied

quality attributes.

2) For each quality attribute, we empirically investigate

which metrics are most impacted by refactorings, and so,

the closest to capture the developer’s intention.

3) For reproducibility and extension, we provide a dataset

of commits, their refactoring operations, and their impact

on several quality metrics1.

The remainder of this paper is organized as follows: Section

II reviews the existing studies related to measuring software

quality and analyzing the relationship between quality attrib-

utes and refactoring. Section III outlines our empirical setup

in terms of data collection, analysis and research question.

Section IV discusses our findings, while Section V captures

any threats to the validity of our work, before concluding with

Section VI.

II. RELATED WORK

It is widely acknowledged in the literature of software

refactoring that it has the ultimate goal to improve software

quality and fix design and implementation bad practices [15].

In recent year, there is much research efforts have focused on

studying and exploring the impact of refactoring on software

quality [3], [4], [6], [7], [17], [27], [29], [38], [52]. The vast

majority of studies have focused on measuring the internal and

external quality attributes to determine the overall quality of

a software system being refactored. In this section, we review

and discuss the relevant literature on the impact of refactoring

on software quality.

In an academic setting, Stroulia and Kapoor [44] invest-

igated the effect of size and coupling measures on software

quality after the application of refactoring. The results in

Stroulia and Kapoor’s work show that size and coupling

metrics decreased after refactorings. Kataoka et al. [21] used

only coupling measures to study the impact of Extract Method

and Extract Class refactoring operations on the maintainability

of a single C++ software system, and found that refactoring

has positive impact on system maintainability. Demeyer [10]

performed a comparative study to investigate the impact of

refactoring on performance. The results of Demeyer’s study

show that program performance is enhanced after the ap-

plication of refactoring. Moreover, Sahraoui et al. [37] used

coupling and inheritance measures to automatically detect

potential anti-patterns and predict situations where refactoring

could be applied to improve software maintainability. The

authors found that quality metrics can help to bridge the gap

between design improvement and its automation, but in some

situations the process cannot be fully automated as it requires

the programmer’s validation through manual inspection.

Tahvildari et al. [47] proposed a software transformation

framework that links software quality requirements like per-

formance and maintainability with program transformation to

improve the target qualities. The results show that utilizing

design patterns increase system’s maintainability and perform-

ance. In another study, Tahvildari and Kontogiannis [46] used

the same framework to evaluate four object-oriented measures

(i.e., cohesion, coupling, complexity, and inheritance) in addi-

tion to software maintainability. Leitch and Stroulia [22] used

dependency graph-based techniques to study the impact of two

refactorings, namely, Extract Method and Move Method, on

software maintenance using two small systems. The authors

found that refactoring enhanced the quality by (1) reducing the

design size, (2) increasing number of procedures, (3) reducing

the data dependencies, and (4) reducing regression testing.

Bios and Mens [14] proposed a framework to analyze the

impact of three refactorings on five internal quality attributes

(i.e., cohesion, coupling, complexity, inheritance, and size),

and their findings show positive and negative impacts on the

selected measures. Bios et al. [12] provided a set of guidelines

for optimizing cohesion and coupling measures. This study

shows that the impact of refactoring on these measures ranged

1 https://smilevo.github.io/self-affirmed-refactoring/

Table (I) A summary of the literature on the impact of refactoring activities on software quality attributes.

Study Year Approach Software Metric Internal QA External QA

Sahraoui et al. [37] 2000 Analyzing code histories CLD / NOC / NMO / NMI

NMA / SIX / CBO / DAC

IH-ICP / OCAIC / DMMEC / OMMEC

Inheritance / Coupling Fault-proneness / Maintainability

Stroulia & Kapoor [44] 2001 Performing a case study LOC / LCOM / CC Size / Coupling Design extensibility

Kataoka et al. [21] 2002 Analyzing code histories Coupling measures Coupling Maintainability

Demeyer [10] 2002 Analyzing code histories N/A Polymorphism Performance

Tahvildari et al. [47] 2003 Analyzing code histories LOC / CC / CMT / Halstead’s efforts Complexity Performance / Maintainability

Leitch & Stroulia [22] 2003 Analyzing code histories SLOC / No. of Procedure Size Maintainability

Bois & Mens [14] 2003 Analyzing code histories NOM / CC / NOC / CBO

RFC / LCOM

Inheritance / Cohesion / Coupling / Size / Complexity N/A

Tahvildari & Kontogiannis [46] 2004 Analyzing code histories LCOM / WMC / RFC / NOM

CDE / DAC / TCC

Inheritance / Cohesion / Coupling / Complexity Maintainability

Bois et al. [12] 2004 Analyzing code histories N/A Cohesion / Coupling Maintainability

Bois et al. [13] 2005 Analyzing code histories N/A N/A Understandability

Geppert et al. [16] 2005 Performing a case study N/A N/A Changeability

Ratzinger et al. [36] 2005 Mining commit log

Analyzing code histories

N/A Coupling Evolvability

Moser et al. [30] 2006 Analyzing code histories CK / MCC / LOC Inheritance / Cohesion / Coupling / Complexity Reusability

Wilking et al. [52] 2007 Analyzing code histories CC / LOC Complexity Maintainability / Modifiability

Stroggylos & Spinells [43] 2007 Mining commit log CK / Ca / NPM Inheritance / Cohesion / Coupling / Complexity N/A

Moser et al. [29] 2008 Analyzing code histories CK / LOC / Effort (hour) Cohesion / Coupling / Complexity Productivity

Alshayeb [3] 2009 Analyzing code histories CK / LOC / FANOUT Inheritance / Cohesion / Coupling / Size Adaptability / Maintainability / Testability / Reusability

Understandability

Hegedus et al. [17] 2010 Analyzing code histories CK Coupling / Complexity / Size Maintainability / Testability / Error Proneness / Changeability

Stability / Analizability

Shatnawi & Li [38] 2011 Analyzing code histories CK / QMOOD Inheritance / Cohesion / Coupling / Po lymorphism / Size

Encapsulation / Composition / Abstraction / Messaging

Reusability / Flexibility / Extendibility / Effectiveness

Bavota et al. [5] 2013 Analyzing code histories

Surveying developers

ICP / IC-CD / CCBC Coupling N/A

Szoke et al. [45] 2014 Mining commit log

Surveying developers

CC / U / NOA / NII / NAni

LOC / NUMPAR / NMni / NA

Size / Complexity N/A

Bavota et al. [4] 2015 Mining commit log

Analyzing code histories

CK / LOC / NOA / NOO

C3 / CCBC

Inheritance / Cohesion / Coupling / Size / Complexity N/A

Cedrim at al. [6] 2016 Mining commit log

Analyzing code histories

LOC / CBO / NOM / CC

FANOUT / FANIN

Cohesion / Coupling / Complexity N/A

Chavez et al. [7] 2017 Mining commit log

Analyzing code histories

CBO / WMC / DIT / NOC

LOC / LCOM2 / LCOM3 / WOC

TCC / FANIN / FANOUT / CINT

CDISP / CC / Evg / NPATH

MaxNest / IFANIN / OR / CLOC

STMTC / CDL / NIV / NIM / NOPA

Inheritance / Cohesion / Coupling / Size / Complexity N/A

Pantiuchina et al. [35] 2018 Mining commit log

Analyzing code histories

LCOM / CBO / WMC / RFC

C3 / B&W / SRead

Cohesion / Coupling / Complexity Readability

from negative to positive. In a follow-up work, Bios et al. [13]

conducted a study to differentiate between the application of

Refactor to Understand and the traditional Read to Understand

pattern. Their findings show that refactoring plays a role in

improving the understandability of the software.

Geppert et al. [16] investigated the impact of refactoring

on changeability focusing on three factors for changeability,

namely, customer-reported defect rates, change effort, and

scope of changes. Their findings show a significant decrease

in the first two factors. Ratzinger et al. [36] analyzed the

historical data of a large industrial system and focused on

reducing change couplings. Based on the identified change

couplings, they also analyzed code smell changes for the

purpose of identifying where to apply refactoring efficiently.

They concluded that refactoring is able to enhance software

evolvability (i.e., reduce the change coupling). In an agile

development environment, Moser et al. [30] used internal

measures (i.e., CK, MCC, LOC) to explore the effect of

refactoring on the reusability of the code using a commer-

cial system, and found that refactoring was able to improve

the reusability of hard-to-reuse classes. Wilking et al. [52]

empirically studied the effect of refactoring on non-functional

aspects, i.e., the maintainability and modifiability of system

systems. They tested the maintainability by explicitly adding

defects to the code, and then they measured the time taken to

remove them. Modifiability, on the other hand, was examined

by adding new functionalities and then measuring the LOC

metric and the time taken to implement these features. The

authors did not find a clear effect of refactoring on these two

external attributes.

Stroggylos and Spinellis [43] opted for searching words

stemming from the verb “refactor" such as “refactoring” or

“refactored” to identify refactoring-related commits to study

the impact of refactoring on quality using eight object-oriented

metrics. Their results indicated possible negative effects of

refactoring on quality, e.g., increased LCOM metric. Moser et

al. [29] studied the impact of refactoring on the productivity

in an agile team. The achieved results show that refactoring

improved software developers’ productivity besides several

aspects of quality, e.g., maintainability. Alshayeb [3] con-

ducted a study aiming at assessing the impact of eight re-

factorings on five external quality attributes (i.e., adaptability,

maintainability, understandability, reusability, and testability).

The author found that refactoring could improve the quality

in some classes, but could also decrease software quality to

some extent in other classes. Hegedus et al. [17] examined

the effect of singular refactoring techniques on testability,

error proneness, and other maintainability attributes. They

concluded that refactoring could have undesired side effects

that can degrade the quality of the source code.

In an empirical setting, Shatnawi and Li [38] used the

hierarchical quality model to assess the impact of refactoring

on four software quality factors, namely, reusability, flexibility,

extendibility, and effectiveness. The authors found that the

majority of refactoring operations exhibit positive impact on

quality; however, some operations deteriorated quality. Bavota

et al. empirically investigated the developers’ perception of

coupling, as captured by structural, dynamic, semantic, and

logical coupling measures. They found that semantic coupling

measure aligns with developers’ perceptions better than the

other coupling measures. In a more recent study, Bavota et

al. [4] used RefFinder2, a version-based refactoring detec-

tion tool, to mine the evolution history of three open-source

systems. They mainly investigated the relationship between

refactoring and quality. The study findings indicate that 42%

of the performed refactorings are affected by code smells, and

refactorings were able to eliminate code smells in only 7% of

the cases.

Cedrim et al. [6] conducted a longitudinal study of 25

projects to investigate the improvement of software structural

quality. They analyzed the relationship of refactorings and

code smells by classifying refactorings according to the ad-

dition or removal of poor code structures. The study results

indicate that only 2.24% of refactorings removed code smells,

and 2.66% introduced new ones. Recently, Chavez et al.

[7] studied the effect of refactoring on five internal quality

attributes, namely, cohesion, coupling, complexity, inheritance,

and size, using 25 quality metrics. The study shows that root-

canal refactoring-related operations are either improved or at

least not worsened the internal quality attributes. Additionally,

when floss refactoring-related operations are applied, 55% of

these operations improved these attributes, while only 10% of

quality declined.

In particular, two studies [35], [45] are most related to our

work have analyzed the comment commits in which developers

stated the purpose of improving the quality. Szoke et al. [45]

studied 198 refactoring commits of five large-scale industrial

systems to investigate the effects of these commits on quality

of several revisions for a period of time. To know the purpose

of the applied refactorings, they trained developers and asked

them to state the reason when committing the changes to

the repositories, which could be related to (1) fix coding

issues, (2) fix anti-patterns, and (3) improve certain metrics.

The study results show that performing a single refactoring

could negatively impact the quality, but applying refactorings

in blocks (e.g., fixing more coding issues or improving more

quality metrics) can significantly improve software quality.

More recently, Pantiuchina et al. [35] empirically investigated

the correlation between seven code metrics and the quality im-

provement explicitly reported by developers in 1,282 commit

messages. The study shows that quality metrics sometimes do

not capture the quality improvement reported by developers. A

common indicator to assess the quality improvements between

these studies resides in the use the quality metrics. Both

of these studies found that minor refactoring changes rarely

impact the quality of the software.

All of the above-mentioned studies have focused on as-

sessing the impact of refactorings on the quality by either

considering the internal or the external quality attributes using

a variety of approaches. Among them, few studies [4], [6], [7],

[35], [36], [43], [45] mined software repositories to explore the

impact on quality. Otherwise, the vast majority of these studies

used a limited set of projects and mined general commits

2 https://github.com/SEAL-UCLA/Ref-Finder

Table (II) Internal quality attributes and their corresponding

structural metrics used in this study.

Quality Attribute Study Software Metrics

Cohesion [7], [35] Lack of Cohesion of Methods (LCOM) [8]
Coupling [7], [35] Coupling Between Objects (CBO) [8]

 [35] Response For Class (RFC) [8]

 [7] Fan-in (FANIN) [19]

 [7] Fan-out (FANOUT) [19]
Complexity [7] Cyclomatic Complexity (CC) [24]

 [7], [35], [42] Weighted Method Count (WMC) [8]

 [33], [42] Response For Class (RFC) [8]

 [42] Lack of Cohesion of Methods (LCOM) [8]

 [7] Essential Complexity (Evg) [24]

 [7] Paths (NPATH) [34]

 [7] Nesting (MaxNest) [23]
Inheritance [7], [42] Depth of Inheritance Tree (DIT) [8]

 [7], [42] Number of Children (NOC) [8]

 [7] Base Classes (IFANIN) [11]
Polymorphism [42] Weighted Method Count (WMC) [8]

 [33], [42] Response For a Class (RFC) [8]
Encapsulation [42] Weighted Method Count (WMC) [8]

 [42] Lack of Cohesion of Methods (LCOM) [8]

Abstraction [42] Weighted Method Count (WMC) [8]

 [42] Lack of Cohesion of Methods (LCOM) [8]
Design Size [7] Lines of Code (LOC) [23]

 [7] Lines with Comments (CLOC) [23]

 [7] Statements (STMTC) [23]

 [7] Classes (CDL) [23]

 [7] Instance Variables (NIV) [23]

 [7] Instance Methods (NIM) [23]

without applying any form of verification regarding whether

refactorings have actually been applied.

Our work is different from these studies as our main purpose

is to explore if there is an alignment between quality metrics

and quality improvements that are documented by developers

in the commit messages. As we summarize these state-of-

the-art studies in Table I, we identify 8 popular quality at-

tributes, namely Cohesion, Coupling, Complexity, Inheritance,

Polymorphism, Encapsulation, Abstraction and Design size.

As different studies advocate for various metrics to calculate

these quality attributes, we extract and calculate 27 structural

metrics. In particular, on a more qualitative sense, we conduct

an empirical study using 1,245 commits that are proven to

contain real-world instances of refactoring activities, in the

purpose of improving software design. To the best of our

knowledge, no previous study has empirically investigated,

using a curated set of commits, the representativeness of

structural design metrics for internal quality attributes. In

the next section, we detail the steps we took to design our

empirical setup.

III. EMPIRICAL STUDY SETUP

Our main goal is to investigate whether the developer

perception of quality improvement (as expected by developers)

aligns with the real quality improvement (as assessed by qual-

ity metrics). In particular, we address the following research

question:

• Is the developer perception of quality improvement

aligned with the quantitative assessment of code quality?

To answer our research question, we conduct a three-phased

empirical study. An overview of the experiment methodology

is depicted in Figure 1. The initial phase consists of selecting

and mining a large number of open-source Java projects and

detecting refactoring instances that occur throughout their

development history, i.e., commit-level code changes, of each

considered project. The second phase consists of analyzing

the commit messages as a mean of identifying refactoring

commits in which developers document their perception of

In this phase, We collect a total of 1,208,970 refactoring

operations from 322,479 commits, applied during a period of

23 years (1997-2019). An overview of the studied benchmark

is provided in Table III.

Table (III) Studied dataset statistics.

internal quality attributes. Thereafter, the third phase involves
the selection of software quality metrics to compare its values

before and after the selected refactoring commits.

A. Selection of Quality Attributes and Structural Metrics

Item Count

Studied projects 3,795
Commits with refactorings 322,479
Refactoring operations 1,208,970

Commits with refactorings & Keywords 2,312
Remove false positive commits 1,067

To setup a comprehensive set of quality attributes, to be Final dataset 1,245

assessed in our study, we first conduct a literature review
on existing and commonly acknowledged software quality
attributes [8], [11], [19], [23], [24], [34]. Then, we checked

if the metrics assess several object-oriented design aspects in

order to map each internal quality attribute to the appropriate

structural metric(s). For example, the Response For Class

(RFC) metric is typically used to measure Coupling and

Complexity quality attributes. More generally, we extract, from

literature review, all the associations between metrics (e.g., CK

suite [8], McCabe [24] and Lorenz and Kidd’s book [23]) with

internal quality attributes.

The extraction process results in 27 distinct structural met-

rics as shown in Table II. The list of metrics is (1) well-

known and defined in the literature, and (2) can assess on

different code-level elements, i.e., method, class, package, and

(3) can be calculated by existing static analysis tools. For this

study, all metrics values are automatically computed using the

UNDERSTAND3, a popular static analysis framework.

B. Refactoring Detection

To collect the necessary commits, we refer to an existing

large dataset of links to GitHub repositories [1]. We perform

an initial filtering, using Reaper [31], to only navigate through

well-engineered projects. So, we ended up reducing the num-

ber of selected projects from 57,447 to 3,795. To extract the

entire refactoring history in each project, we use two popular

refactoring mining tools, namely Refactoring Miner [40] and

ReffDiff [41]. We selected both tools because they are known

to be in the top of refactoring detection tools, in terms of

accuracy [48], [50] (precision of 98% and 100%, and recall of

87% and 88%, respectively), and because they are both built-in

to analyze code changes in git repositories and detect applied

refactorings, which is the case for our intended data, along

with being suitable for our study that requires a high degree

of automation in data mining. As for the selection of commits

with refactorings, we perform a voting process between both

tools, i.e., in order for a given commit to be selected, it has

to be detected by both tools as a container to at least one

refactoring operation. We perform this voting process to raise

the likelihood of refactoring existence in the commit. Since

the accuracy of the tools is out of the scope of this work, and

since we do not perform any refactoring-related analysis, we

do not care if the detection results overlap or not.

3 https://scitools.com/

C. Data Extraction

After extracting all refactoring commits, we want to only

keep commits where refactoring is documented, i.e., self-

affirmed refactorings [2]. We continue to filter them, using

the content of their messages at this stage. We start with

using a keyword-based search to find commits whose mes-

sages contain one of the keywords (i.e., Cohesion, Coupling,

Complexity, Inheritance, Polymorphism, Encapsulation, Ab-

straction, size)

This keyword-based filtering resulted in only selecting 2,312

commit messages. We notice that the ratio of these commits

is very small in comparison with the total number of refact-

oring commits, i.e., 322,479. However, these observations are

aligned with previous studies [32], [45] as developers typically

do not provide details when they document their refactorings.

To ensure that these commits reported developers’ intention

to improve quality attributes, we manually inspect and read

through these refactoring commits to remove false positives.

An example of a discarded commit is: “Refactored Ephemer-

alFileSystemAbstraction”. We discarded this commit because

the quality attribute is actually part of the identifier name

of the class. In case of disagreement between the authors

on the inclusion of a certain commit, it was excluded. This

step resulted in only considering 1,245 commits. During this

process, we manually classified them with respect to their

quality attributes, as one commit could belong to more than

one quality attribute. Our goal is to have a gold set of

commits in which the developers explicitly reported the quality

attributes improvement. This gold set will serve to check

later if there is an alignment between the real quality metrics

affected in the source code, and the quality improvement as

documented by developers. Examples of commit messages

belonging to the gold set, are showcased in Table IV.

Since commits typically contain multiples changed files,

which may not all be involved in the refactoring, we filter

them out, as we checkout, for each commit, its changed Java

files, and keep only those involved in the refactoring opera-

tion(s), associated with that commit. The resulting commits,

correspond to our data points, each data point is represented by

a set of pre-refactoring and post-refactoring Java files. These

data points will be used in the experiments, to measure the

Figure (1) Empirical study design overview.

Table (IV) Examples of selected commit messages.

Quality Attribute Commit Message

Cohesion Refactor code for better cohesion

Coupling Reduce coupling between packages

Complexity reducing complexity by refactoring

Inheritance refactored document requests code to better reflect inheritance ...

Polymorphism Enhance field manager to account for polymorphism when getting a field from a ceiling class

Encapsulation Refactored transactional observer code for better encapsulation and runtime performance

Abstraction code refactored in order to improve the abstraction

Design Size Major refactoring to reduce code size and have at least halfway reasonable structure ...

effect of changes in terms of structural metrics, with respect

to the quality attribute, announced in the commit message.

IV. EMPIRICAL STUDY RESULTS & DISCUSSION

For each refactoring commit with a documented internal

quality attribute by developers, we compute its corresponding

metric values (see Table II) before and after the commit.

For instance, for commit messages related to reducing the

complexity of the source code, we calculate seven corres-

ponding metric values before and after the selected refact-

oring commit, i.e., Cyclomatic Complexity (CC), Weighted

Method Count (WMC), Response For Class (RFC), Lack of

Cohesion of Methods (LCOM), Essential Complexity (Evg),

Paths (NPATH), and Nesting (MaxNest) [8], [23], [24], [34],

as shown in Table II. As we calculate the metrics values of

pre- and post-refactoring, we want to distinguish, for each

metric, whether there is a variation on its pair of values,

whether this variation indicates an improvement, and whether

that variation is statistically significant. Therefore, we use the

Wilcoxon test, a non-parametric test, to compare between the

group of metric values before and after the commit, since these

groups are dependent on one another. The Null hypothesis

is defined by no variation in the metric values of pre- and

post-refactored code elements. Thus, the alternative hypothesis

indicates that there is a variation in the metric values. In each

(a) Cohesion - LCOM (b) Coupling - CBO (c) Coupling - FANIN (d) Coupling - FANOUT

(e) Coupling - RFC (f) Complexity - CC (g) Complexity - WMC (h) Complexity - RFC

(i) Complexity - LCOM (j) Complexity - Evg (k) Complexity - NPATH (l) Complexity - MaxNest

(m) Inheritance - DIT (n) Inheritance - NOC (o) Inheritance - IFANIN (p) Polymorphism - WMC

(q) Polymorphism - RFC (r) Encapsulation - WMC (s) Encapsulation - LCOM (t) Abstraction - WMC

(u) Abstraction - LCOM (v) Design Size - LOC (w) Design Size - CLOC (x) Design Size - STMTC

(y) Design Size - CDL (z) Design Size - NIV (aa) Design Size - NIM

Figure (2) Boxplots of metrics values of pre- and post-refactored files.

case, a decreased metric value is considered desirable (i.e., an

improvement). Additionally, the variation between values of

both sets is considered significant if its associated p-value is

less than 0.05. It is important to note that, in many cases, the

same metric is used to evaluate several quality attributes. In

the following, we report the results of our research question.

The boxplots in Figure 2 show the distribution of each

metric before and after each of the examined commits.

To answer our main research question, we provide a detailed

analysis of each of the eight quality attributes as reported in

Table II. Table V shows the overall impact of refactorings on

quality.

1) Cohesion: For commits whose messages report the

amelioration of the cohesion quality attribute, the boxplot

sketched in Figure 2a shows the pre- and post-refactoring

results of the normalized LCOM, used in literature to estimate

the cohesion. A poor LCOM metric value implies generally

that the classes should be split into 1 or more classes with

better cohesion. Thus, if the value of this metric is low,

it indicates a strong cohesiveness of the class. We have

selected the normalized LCOM metric as it has been widely

acknowledged in the literature [7], [18], [35] as being the

alternative to the original LCOM, by addressing its main

limitations (artificial outliers, misperception of getters and

setters, etc.). As can be seen from the boxplot in Figure 2a,

the median drops from 28.12 to 25.86 and the third quartile

is significantly lower which shows a decrease in variation for

commits after refactoring. This result indicates that LCOM is

capturing the developer’s intention of optimizing the cohesion

quality attribute. Furthermore, as shown in Table V, LCOM

has a positive impact on cohesion quality, as it decreases in the

refactored code. This implies that developers did improve the

cohesion of their classes, as outlined in their commit messages.

2) Coupling: For commits whose messages report the

amelioration of the coupling quality attribute, the boxplots

sketched in Figures 2b, 2c, 2d, 2e show the pre- and post-

refactoring results of four structural metrics, i.e., CBO, RFC,

FANIN, and FANOUT, used in literature to estimate the

coupling. We observe from the figure that three out of the

four coupling metrics experienced a degradation in the median

values. For instance, CBO, FANIN and FANOUT medians

dropped, respectively, from 1.19 to 1.00, from 5.94 to 5.91, and

from 2.75 to 2.68. Coupling Between Objects (CBO) counts

of the number of classes that are coupled to a particular class

either through method or attribute calls. Calls are counted

in both directions. CBO values have significantly decreased,

which makes it a good representative of coupling. FANIN

represents how useful is a code element to other code elements,

while FANOUT counts the number of outsider code elements,

a particular code element depends on. While both metrics are

found to be degrading as developers intend to optimize coup-

ling, only the FANOUT’s variation was statistically significant.

Interestingly, the Response for a Class (RFC), which counts

the visibility of a class to outsider classes, has increased as

developers intend to optimize coupling. In theory, increasing

the visibility of a class increases the possibility to other classes

to reach it, and so, it increases its coupling. However, this does

not necessarily hold according to our results, but the variation

is not statistically significant.

The manual inspection, of the refactored code, indicates that

developers typically decrease coupling by reducing (1) the

strength of dependencies that exist between classes, (2) the

message flow of the classes, and (3) the number of inputs

a method uses plus the number of subprograms that call

this method. The code was improved as expected from the

developer intentions in their commit message.

3) Complexity: As for the complexity quality attribute,

we consider seven literature metrics, shown in Table II, to

investigate the code complexity reduction as perceived by de-

velopers. As seen in the boxplots in Figures 2f, 2g, 2j, 2k, 2l,

we observe that the majority metrics ,i.e., CC, WMC, Evg,

NPATH, and MaxNest, experienced a degradation in the

median values. Furthermore, all the variations are statistically

significant. Despite being associated with several metrics,

which are different in their definitions, our results indicate

that 5 out the 7 metrics, accurately represent the complexity

quality attribute. However, RFC’s opposed increase is found

to be statistically significant.

In particular, through a manual inspection of the collected

dataset, we observe that developers tend to reduce the number

of local methods, simplify the structure statements, reduce

the number of paths in the body of the code, and lower the

nesting level of the control statements (e.g., selection and

loop statements) in the method body. On the other hand,

when we observe a significant increase in RFC, we notice

that developers lower the complexity of methods by pulling

them up in the hierarchy, and so they increase the number of

inherited methods.

4) Inheritance: For commits with amelioration to the

inheritance quality attribute, the boxplots sketched in Fig-

ures 2m, 2n, 2o show the pre- and post-refactoring results

Summary. CC, WMC, Evg, NPATH, and MaxNest

generally decrease as developer intends to improve

complexity, and all their variation is significant. Fur-

thermore, our empirical investigation discards RFC

from being an indicator for complexity.

Summary. CBO, FANIN and FANOUT generally de-

crease as developer intends to improve coupling. How-

ever, only CBO and FANOUT variation is significant.

RFC exhibits an opposite variation to coupling, but it

is not statistically significant.

Summary. The normalized LCOM metric does not only

represent a good replacement to the original LCOM,

but also represents the cohesion quality attribute. Its

positive variation is in line with the developer’s inten-

tion in improving cohesion.

of three structural metrics, i.e., DIT, NOC, and IFANIN, used

in literature to estimate the inheritance. We observe that only

one metric out of the three experienced a degradation in the

median values. For instance, the median decreases from 1.09

to 1.00 for DIT, whereas the medians increase from 0.15 to

0.19 and from 1.13 to 1.14 for NOC and IFANIN respectively.

This indicates that developers probably decrease the depth of

the hierarchy by adding more methods for a class to inherit,

increasing the number of immediate subclasses, and increasing

the number of immediate base classes. Although we observed

certain cases that show inheritance improvement as perceived

by developers, the overall depth of the inheritance tree and

the number of immediate subclasses and superclasses did not

decrease. The interpretation of the metric improvement highly

depends on the quality of the code and the developer’s design

decisions. The statistical test shows that the differences are

statistically significant for DIT and NOC, but they are not for

IFANIN.

Summary. DIT generally decreases as developer in-

tends to improve inheritance, and its variation is sig-

nificant. IFANIN exhibit opposite variations to inherit-

ance, but it is not statistically significant. Furthermore,

our empirical investigation discards NOC from being

an indicator for inheritance.

5) Polymorphism: For commits whose messages report

the amelioration of the polymorphism quality attribute, the

boxplots sketched in Figures 2p, 2q show the pre- and post-

refactoring results of two structural metrics, i.e., WMC and

RFC, used in literature to estimate the polymorphism. We

observe that none of these metrics experienced a degradation

in the median values.

The concept of polymorphism is closely related to inherit-

ance. When developers inherit instance variables and methods

from another class, polymorphism techniques allow the sub-

classes to use these variables and methods to perform different

tasks. For this quality attribute, we observe similar trends to

inheritance. There is a rise in the median for both WMC and

RFC. When developers explicitly refer to polymorphism aspect

improvement as a target in the commit messages, they tend

to increase the number of local and inherited methods. The

statistical test shows that the differences are not statistically

significant.

6) Encapsulation: For commits whose messages report

the amelioration of the encapsulation quality attribute, the

boxplots sketched in Figures 2r, 2s show the pre- and post-

refactoring results of two structural metrics, i.e., WMC and

the normalized LCOM, used in literature to estimate the

encapsulation. We observe that both metrics experienced a

degradation in the median values. However, the variations are

statistically significant.

From a qualitative perspective, we observe that developers

prevent access to attributes and methods by defining them to be

private and enclosing them within a single construct. Although

the results of the encapsulation metrics are not statistically

significant, the significant results of cohesion and complexity-

related commits discussed previously might indicate that the

information hiding mechanism could generally help in redu-

cing the complexity of the software systems when developers

are actually limiting the inter-dependencies between compon-

ents, and thus promote cohesion and modularity.

7) Abstraction: For this quality attribute that measures the

generalization-specialization aspect of the design, we noticed

an improvement of both the WMC and the normalized LCOM

metrics, as shown in Figures 2t, 2u. The differences are

not statistically significant. Using this attribute, developers

seem to practically handle the complexity of the methods

when adding one or more descendants by actually hiding the

implementation details, and increasing the class cohesion.

8) Design Size: For commits whose messages report the

amelioration of the design size quality attribute, the boxplots

sketched in Figures 2v, 2w, 2x, 2y, 2z, 2aa show the pre-

and post-refactoring results of six structural metrics, i.e.,

LOC, CLOC, STMTC, CDL, NIV, NIM, used in literature

to estimate the design size. We notice the improvement of

four metrics, namely CLOC, CDL, NIV, and NIM after the

commits in which developers explicitly target the improvement

of the size of the classes. As can be seen in the box plots,

the medians decreased in general. On the other hand, we

notice an increase in LOC and STMTC. Regardless of the

increase or decrease of metric values, their variations are not

statistically significant. This indicates that developers reduce

(1) line containing comments, (2) the number of classes and

(3) the number of declared instance variables and methods.

As for LOC and STMTC, we observed minor increases in the

metric values.

Summary. WMC and the normalized LCOM generally

decrease as developer intends to improve abstraction,

but their variations are not significant. Therefore, we

could not find any metric that has a significant positive

variation which matches the developer’s perception of

improving abstraction.

Summary. WMC and the normalized LCOM generally

decrease as developer intends to improve encapsula-

tion, but their variations are not significant. Therefore,

we could not find any metric that has a significant

positive variation which matches the developer’s per-

ception of improving encapsulation.

Summary. WMC and RFC exhibit opposite variations

to polymorphism, but they are not statistically signi-

ficant. Therefore, we could not find any metric that

has a significant positive variation which matches the

developer’s perception of improving polymorphism.

Table (V) Effect of refactoring on structural metrics,

clustered by their corresponding internal quality attribute.

(+ve) indicates positive impact; (-ve) indicates negative im-

pact; bold indicates statistical significance; italic indicates

improvement.

Quality Attribute Metric Impact p-value

Cohesion LCOM +ve 0.0346
Coupling CBO +ve 0.0400

 RFC -ve 0.2729

 FANIN +ve 0.2338

 FANOUT +ve 0.0456
Complexity CC +ve 0.0001

 WMC +ve 0.0062

 RFC -ve 0.0021

 LCOM -ve 0.2431

 Evg +ve 0.0010

 NPATH +ve < 0.0001

 MaxNest +ve 0.0026

Inheritance DIT +ve 0.0439

 NOC -ve 0.0208

 IFANIN -ve 0.3987

Polymorphism WMC -ve 0.5137

 RFC -ve 0.7983
Encapsulation WMC +ve 0.1769

 LCOM +ve 0.7737

Abstraction WMC +ve 0.1924

 LCOM +ve 0.6988
Design Size LOC -ve 0.8245

 CLOC +ve 0.7855

 STMTC -ve 0.3311

 CDL +ve 0.4870

 NIV +ve 0.2757

 NIM +ve 0.6043

V. THREATS TO VALIDITY

Our study has used a few thousands of refactoring commits

in various systems. Since the analysis was not carried out in

a controlled environment, few threats are discussed in this

section as follows:

Internal Validity. Our analysis is mainly threatened by the

accuracy of the refactoring mining tools because the tool may

miss the detection of some refactorings. However, previous

studies [40], [41], [50] report that Refactoring Miner and

RefDiff have high precision and recall scores compared to

other state-of-the-art refactoring detection tools, which gives

us confidence in using the tools. Another potential threat

to validity relates to commit messages. This study does not

exclude commits containing tangle code changes [20], in

which developers performed changes related to different tasks

and one of these tasks could be related to quality enhancement.

If these changes were committed at once, there is a possibility

that the individual changes are merged and cannot trace it

back to the original task. We did not consider filtering out

such changes in this study. Moreover, our manual analysis is

a time consuming and error prone, which we tried to mitigate

by focusing mainly on commits known to contain refactorings.

Another potential threat to validity is the sample bias, where

the choice of the data may directly impact the results. There-

fore, we explored a large sample of projects, we made sure

they are well engineered to ensure the quality of the findings

along with diversifying the sources to reduce the bias of data

belonging to the same entity. During our qualitative analysis,

we considered only commits where a consensus between

authors was made about whether a message is clearly stating

the enhancement of a particular quality attribute. Commits

which were debatable were discarded. We also provide our

dataset online for further refinement and analysis.

Construct Validity. A potential threat to construct validity

relates to the set of metrics, as it may miss some properties of

the selected internal quality attributes. To mitigate this threat,

we select well-known metrics that cover various properties of

each attribute, as reported in the literature [8].

External Validity. Our analysis was limited to only open-

source Java projects. However, we were still able to analyze

3,795 projects that are well-commented, and varied in size,

contributors, number of commits and refactorings.

VI. CONCLUSION

In this work, we performed an exploratory study to investig-

ate the alignment between quality improvement and software

design metrics by focusing on 8 internal quality attributes and

27 structural metrics. In summary, the main conclusions are:

—A variety of structural metrics can represent the internal

quality attributes considered in this study. Based on our

empirical investigation, for metrics that are associated with

quality attributes, there are different degrees of improvement

and degradation of software quality.

—Most of the metrics that are mapped to the main quality

attributes, i.e., cohesion, coupling, and complexity, do capture

developer intentions of quality improvement reported in the

commit messages. In contrast, there is also a case in which

the metrics do not capture quality improvement as perceived

by developers.

—As for Encapsulation, Abstraction, Polymorphism, and

Design Size. We cannot find any metric that can represent

developer’s intention of optimizing these quality attributes,

and so these findings motivates a deeper investigation on

understanding the mismatch between theory and practice.

As future work, we plan to empirically assess the impact

of external quality metrics (e.g., testability and readability)

as documented by developers in their commit messages on

quality and compare and contrast them with the findings for

the internal ones. This will give us an indication which quality

attributes are improved the most by developers. Also, we

plan on investigating the impact of composed refactorings on

each of the quality attributes, in contrast with existing studies

which analyze each refactoring type individually. We also want

to explore what factors might contribute to the significant

improvement of the quality metrics (e.g., developer experience,

proximity to release date, and refactoring community culture).

Summary. CLOC, CDL, NIV, and NIM generally de-

crease as developers intend to improve design size,

but their variations are not significant. Therefore, we

could not find any metric that has a significant positive

variation which matches the developer’s perception of

improving design size.

ACKNOWLEDGMENT

We sincerely thank the authors of the refactoring mining

tools that we have used in this study, for providing their tools

open source and for allowing the community to benefit from

them.

REFERENCES

[1] M. Allamanis and C. Sutton. Mining source code repositories at massive scale
using language modeling. In Proceedings of the 10th Working Conference on

Mining Software Repositories, pages 207–216. IEEE Press, 2013.

[2] E. A. AlOmar, M. W. Mkaouer, and A. Ouni. Can refactoring be self-affirmed?
an exploratory study on how developers document their refactoring activities

in commit messages. In Proceedings of the 3nd International Workshop on
Refactoring-accepted. IEEE, 2019.

[3] M. Alshayeb. Empirical investigation of refactoring effect on software quality.
Information and software technology, 51(9):1319–1326, 2009.

[4] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba. An experimental
investigation on the innate relationship between quality and refactoring. Journal
of Systems and Software, 107:1–14, 2015.

[5] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia. An
empirical study on the developers’ perception of software coupling. In Proceedings
of the 2013 International Conference on Software Engineering, pages 692–701.

IEEE Press, 2013.

[6] D. Cedrim, L. Sousa, A. Garcia, and R. Gheyi. Does refactoring improve software
structural quality? a longitudinal study of 25 projects. In Proceedings of the 30th

Brazilian Symposium on Software Engineering, pages 73–82. ACM, 2016.

[7] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia. How does
refactoring affect internal quality attributes?: A multi-project study. In Proceedings

of the 31st Brazilian Symposium on Software Engineering, pages 74–83. ACM,
2017.

[8] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on software engineering, 20(6):476–493, 1994.

[9] C. M. S. Couto, H. Rocha, and R. Terra. A quality-oriented approach to recommend
move method refactorings. In Proceedings of the 17th Brazilian Symposium on
Software Quality, pages 11–20. ACM, 2018.

[10] S. Demeyer. Maintainability versus performance: What’s the effect of introducing
polymorphism. Edegem, Belgium: Universiteit Antwerpe, 2002.

[11] G. Destefanis, S. Counsell, G. Concas, and R. Tonelli. Agile processes in
software engineering and extreme programming. chapter Software Metrics in Agile

Software: An Empirical Study, pages 157–170. Springer-Verlag, Berlin, Heidelberg,
2014.

[12] B. Du Bois, S. Demeyer, and J. Verelst. Refactoring-improving coupling and
cohesion of existing code. In 11th working conference on reverse engineering,
pages 144–151. IEEE, 2004.

[13] B. Du Bois, S. Demeyer, and J. Verelst. Does the" refactor to understand"
reverse engineering pattern improve program comprehension? In Ninth European
Conference on Software Maintenance and Reengineering, pages 334–343. IEEE,
2005.

[14] B. Du Bois and T. Mens. Describing the impact of refactoring on internal program
quality. In International Workshop on Evolution of Large-scale Industrial Software
Applications, pages 37–48, 2003.

[15] M. Fowler, K. Beck, J. Brant, W. Opdyke, and d. Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[16] B. Geppert, A. Mockus, and F. Robler. Refactoring for changeability: A way to
go? In 11th IEEE International Software Metrics Symposium (METRICS’05), pages
10–pp. IEEE, 2005.

[17] G. Hegedűs, G. Hrabovszki, D. Hegedűs, and I. Siket. Effect of object oriented
refactorings on testability, error proneness and other maintainability attributes. In
Proceedings of the 1st Workshop on Testing Object-Oriented Systems, page 8. ACM,

2010.

[18] B. Henderson-Sellers. Object-oriented metrics: measures of complexity. Prentice-
Hall, Inc., 1995.

[19] S. Henry and D. Kafura. Software structure metrics based on information flow.
IEEE transactions on Software Engineering, (5):510–518, 1981.

[20] K. Herzig, S. Just, and A. Zeller. The impact of tangled code changes on defect
prediction models. Empirical Software Engineering, 21(2):303–336, 2016.

[21] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quantitative evaluation
of maintainability enhancement by refactoring. In International Conference on

Software Maintenance, 2002. Proceedings., pages 576–585. IEEE, 2002.

[22] R. Leitch and E. Stroulia. Assessing the maintainability benefits of design restruc-
turing using dependency analysis. In Proceedings. 5th International Workshop

on Enterprise Networking and Computing in Healthcare Industry (IEEE Cat. No.
03EX717), pages 309–322. IEEE, 2003.

[23] M. Lorenz and J. Kidd. Object-oriented software metrics, volume 131. Prentice
Hall Englewood Cliffs, 1994.

[24] T. J. McCabe. A complexity measure. IEEE Transactions on software Engineering,
(4):308–320, 1976.

[25] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide.
High dimensional search-based software engineering: finding tradeoffs among 15

objectives for automating software refactoring using nsga-iii. In Proceedings of
the 2014 Annual Conference on Genetic and Evolutionary Computation, pages
1263–1270. ACM, 2014.

[26] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide.
Recommendation system for software refactoring using innovization and interactive

dynamic optimization. In Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering, pages 331–336. ACM, 2014.

[27] M. W. Mkaouer, M. Kessentini, M. Ó. Cinnéide, S. Hayashi, and K. Deb. A
robust multi-objective approach to balance severity and importance of refactoring

opportunities. Empirical Software Engineering, 22(2):894–927, 2017.
[28] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb, and

A. Ouni. Many-objective software remodularization using nsga-iii. ACM Transac-

tions on Software Engineering and Methodology (TOSEM), 24(3):17, 2015.
[29] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi. A case study

on the impact of refactoring on quality and productivity in an agile team. In IFIP
Central and East European Conference on Software Engineering Techniques, pages

252–266. Springer, 2007.
[30] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi. Does refactoring improve

reusability? In International Conference on Software Reuse, pages 287–297.
Springer, 2006.

[31] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan. Curating github for engineered
software projects. Empirical Software Engineering, 22(6):3219–3253, 2017.

[32] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how we know

it. IEEE Transactions on Software Engineering, 38(1):5–18, 2012.
[33] C. Neelamegam and M. Punithavalli. A survey-object oriented quality metrics.

Global Journal of Computer Science and Technology, 9(4):183–186, 2009.
[34] B. A. Nejmeh. Npath: a measure of execution path complexity and its applications.

Communications of the ACM, 31(2):188–200, 1988.
[35] J. Pantiuchina, M. Lanza, and G. Bavota. Improving code: The (mis) perception of

quality metrics. In 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 80–91. IEEE, 2018.

[36] J. Ratzinger, M. Fischer, and H. Gall. Improving evolvability through refactoring,
volume 30. ACM, 2005.

[37] H. A. Sahraoui, R. Godin, and T. Miceli. Can metrics help to bridge the gap
between the improvement of oo design quality and its automation? In icsm, page
154. IEEE, 2000.

[38] R. Shatnawi and W. Li. An empirical assessment of refactoring impact on software
quality using a hierarchical quality model. International Journal of Software

Engineering and Its Applications, 5(4):127–149, 2011.
[39] D. Silva, R. Terra, and M. T. Valente. Recommending automated extract method

refactorings. In Proceedings of the 22nd International Conference on Program
Comprehension, pages 146–156. ACM, 2014.

[40] D. Silva, N. Tsantalis, and M. T. Valente. Why we refactor? confessions of

github contributors. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 858–870. ACM, 2016.

[41] D. Silva and M. T. Valente. Refdiff: detecting refactorings in version histories. In
Proceedings of the 14th International Conference on Mining Software Repositories,

pages 269–279. IEEE Press, 2017.
[42] V. Singh and V. Bhattacherjee. Evaluation and application of package level metrics

in assessing software quality. International Journal of Computer Applications,
58(21), 2012.

[43] K. Stroggylos and D. Spinellis. Refactoring–does it improve software quality?
In Fifth International Workshop on Software Quality (WoSQ’07: ICSE Workshops

2007), pages 10–10. IEEE, 2007.
[44] E. Stroulia and R. Kapoor. Metrics of refactoring-based development: An experi-

ence report. In OOIS 2001, pages 113–122. Springer, 2001.
[45] G. Szóke, G. Antal, C. Nagy, R. Ferenc, and T. Gyimóthy. Bulk fixing coding

issues and its effects on software quality: Is it worth refactoring? In 2014 IEEE

14th International Working Conference on Source Code Analysis and Manipulation,
pages 95–104. IEEE, 2014.

[46] L. Tahvildari and K. Kontogiannis. A metric-based approach to enhance design
quality through meta-pattern transformations. In Seventh European Conference

onSoftware Maintenance and Reengineering, 2003. Proceedings., pages 183–192.
IEEE, 2003.

[47] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos. Quality-driven software re-
engineering. Journal of Systems and Software, 66(3):225–239, 2003.

[48] L. Tan and C. Bockisch. A survey of refactoring detection tools. In Software
Engineering (Workshops), pages 100–105, 2019.

[49] R. Terra, M. T. Valente, S. Miranda, and V. Sales. Jmove: A novel heuristic and tool
to detect move method refactoring opportunities. Journal of Systems and Software,
138:19–36, 2018.

[50] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig. Accurate
and efficient refactoring detection in commit history. In Proceedings of the 40th

International Conference on Software Engineering, pages 483–494. ACM, 2018.
[51] N. Ubayashi, Y. Kamei, and R. Sato. Can abstraction be taught? refactoring-based

abstraction learning. In 6th International Conference on Model-Driven Engineering
and Software Development, MODELSWARD 2018, pages 429–437. SciTePress,

2018.
[52] D. Wilking, U. F. Kahn, and S. Kowalewski. An empirical evaluation of refactoring.

e-Informatica, 1(1):27–42, 2007.

